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ABSTRACT 

Atomic force microscopy is an established technique for probing the local elastic properties 
of materials at submicron scales.  In some cases, linear elastic contact theories based on Hertzian 
and adhesive contact mechanics suffice to model the indentation process.  However, at the large 
strains that are common in many nanoindentation experiments, the linear models become invalid.  
A force-indentation relationship based on the Mooney-Rivlin equation and capable of being 
extended to adhesive behavior that closely follows the Derjaguin-Muller-Toporov (DMT) theory 
is presented.  We use this new relationship to fit data from the AFM indentation of highly 
swollen, chemically crosslinked poly(vinyl alcohol) gels, which are known to exhibit rubber 
elastic behavior.  The extracted Young’s moduli agree well with values obtained from 
macroscopic uniaxial compression tests. 

 

INTRODUCTION 
The well-established field of indentation, including the theories used to model the mechanics 

of contact between the indenter and the probed material, has experienced rapid advancement 
with the advent of instrumented nanoindentation [1,2].  The prevalent nanoindentation 
technologies (atomic force microscopy – AFM, and depth-sensing nanoindentation) permit the 
mechanical probing of surfaces at submicron length scales.  Although linear elastic models based 
on the Hertz theory [3] can be applied successfully [4], tip-sample interactions (primarily 
adhesion) can cause the indentation behavior to deviate significantly from that predicted by the 
models.  Adhesive theories, also predicated on linear elasticity, have therefore been developed by 
Johnson et al (JKR theory) [5], Derjaguin et al (DMT theory) [6], and Maugis (Maugis-Dugdale, 
or MD theory) [7]. 

In nanoindentation, deformation of the indented material beyond the linear elastic limit can 
be unavoidable depending on the geometry of the indenter.  Although spherical tips generate 
much smaller stresses and strains than common tapered tips at comparable depths [8], a 
combination of small tip diameter and narrow range of linearity may still limit the linear regime 
to indentation depths that fall outside the resolution of the instrument.  Even when it is feasible to 
either restrict the maximum indentation depth or truncate the dataset, accuracy may be adversely 
affected by signal-to-noise ratios that are typically higher in the vicinity of tip-sample contact 
than at larger indentation depths.  Here, we are interested in the nanoindentation of materials that 
exhibit rubber-like behavior.  These materials can be elastically deformed to large strains, with 
the stress-strain relationship generally adhering to the Mooney-Rivlin model; at small strains, the 
relationship is approximately linear. 

In this paper, we make use of an automated algorithm we previously described [4] based on 
Pietrement and Troyon’s empirical formulation of the MD theory [9] and present an approximate 



Mooney-Rivlin force-indentation relationship for spherical indenters based on the Hertz and 
DMT theories.  Results of AFM indentation experiments performed on chemically crosslinked 
poly(vinyl alcohol) gels, which have been shown to obey rubber elasticity [10] are also 
presented. 
 

THEORY 
The JKR and DMT theories for indentation with a spherical tip are applicable to opposite 

extremes of the relationship between material compliance, strength of the tip-sample adhesive 
force, and tip radius [11].  The JKR theory is valid for relatively compliant materials that adhere 
strongly to tips with large radii whereas the DMT theory applies to the indentation of stiffer 
materials with small tips and weak adhesive interactions.  In the intermediate regime, the 
mechanics can be modeled using the MD theory and its empirical forms [9,12].  Details of the 
specific theories can be found in the original references [5-7,9,12]. 

To formulate an adhesive contact model based on rubber elasticity, we start by defining the 
average indentation stress (σ*) and strain (ε*) as 
 
 σ* = F / πa2 (1) 
 
 ε* = a / R (2) 
 
where F is the net indentation force, a is the contact radius, and R is the radius of the spherical 
indenter.  The classical Hertz equation and the DMT theory relating F to the indentation depth δ 
is 
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where δ = a2/R and E and ν are Young’s modulus and Poisson’s ratio of the indented material, 
respectively.  Note that Fad = 0 in the Hertz theory and that the ratio of σ* to ε* is a constant, as 
expected for linear elastic indentation.  The nonlinear Mooney-Rivlin relationship between stress 
σ and the stretch ratio λ for an incompressible material can be expressed as [13] 
 
 σ = C1 [λ – λ-2] + C2 [1 – λ-3] (4) 
 
where C1 and C2 are constants.  Adopting the convention that σ* and ε* are positive for δ > 0 
(note that since indentation is predominantly a compressive process, this convention is contrary 
to the standard engineering notation used in the Mooney-Rivlin equation), Equation (4) can be 
rewritten with σ replaced by -σ* and λ by (1 – ε*).  Substituting Equations 1 and 2 into the recast 
Equation 4 and assuming that the relationship between a and δ at large strain changes negligibly 
from that at small strains (a = R1/2δ1/2), the following force-indentation relationship is obtained: 
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Note that the sum of C1 and C2 are related to the material properties by 
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where E0 is the initial Young’s modulus. 

The applied force and resulting indentation are measured indirectly in the AFM, with the 
former inferred from the deflection of the cantilever and the latter depending on both cantilever 
deflection and the displacement of the cantilever base.  Hence, conversion of acquired values of 
cantilever deflection (d) and base displacement (z) relies on the identification of the reference 
points listed in Table I [4].  In the case of adhesion, the applied force is nonzero at the point of 
contact or separation because it must balance the adhesive force; the zero force reference occurs 
at some positive indentation depth.  Once the reference points have been identified, the adhesive 
force is 

 
 Fad = -k(d0 – d1) = 2πγR (7) 

 
where k is the spring constant of the cantilever and γ is the interfacial energy in units of energy 
per unit area [6,9]. 

Table I. Essential reference points and their relation to force and indentation. 

Non-adhesive 
(Hertz) Contact: (z0,d0) 

Fn = k(d – d0) 
δ = z – z0 – (d – d0) 

Adhesive 
(DMT) 

Contact:     (z0,d0) 
Zero force: (z1,d1) 

Fn = k(d – d1) 
δ = z – z0 – (d – d0) 

k: spring constant of 
cantilever  

 

EXPERIMENT 
Poly(vinyl alcohol) of MW (= 70,000 – 100,000) was obtained from Sigma (St. Louis, MO) 

and dissolved in water at 99 °C to form a 14% stock solution.  Gels at polymer concentrations of 
6% and 12% were made by crosslinking the polymer in aqueous solution with glutaraldehyde at 
pH ~ 1.5.  The ratio of units of crosslinker to units of monomer was maintained at 1:100.  Gel 
cylinders (1 cm diameter, 1 cm height) and films (> 2 mm thick) were cast for macroscopic 
displacement-controlled compression testing and AFM nanoindentation, respectively.  The 
samples were swollen to equilibrium in water prior to testing.  General purpose silicon nitride 
tips (Veeco, Santa Barbara, CA) with 9.6 µm polystyrene or 5.5 µm glass beads attached were 
used for the AFM measurements, performed using a commercial AFM (Bioscope I with 
Nanoscope IIIA controller, Veeco).  The spring constant of the cantilever was measured by the 
thermal tune method while bead diameters were measured from images acquired during the 
attachment process.  Accuracy of the cantilever deflections was ascertained by measuring the 
sensitivity against a rigid surface prior to testing.  A raster scanning approach (“force-volume”) 
was applied to automatically perform indentations, typically set to a resolution of 16×16 (256 



total indentations) over an area of 50×50 µm.  Further details of the procedure and results of the 
nanoindentation experiments using Equation 3 and the empirical Pietrement-Troyon equation 
have been reported elsewhere [4].  Here, we apply nonlinear analysis to the same datasets and 
compare the results (extracted values of Young’s modulus) to those obtained using the linear 
theories.  All analysis was conducted using software developed in MATLAB (Mathworks, 
Natick, MA) and based on the algorithms described elsewhere [4]. 
 

DISCUSSION  
Maugis introduced a nondimensional parameter to delimit the transition region between the 

opposing JKR and DMT theories.  The empirical forms of the MD theory developed by Carpick 
et al and by Pietrement and Troyon make use of an equivalent parameter, α, where α = 1 
corresponds to the JKR case and α = 0 to the DMT theory.  It is important to note that Equation 
5 is not valid when α deviates from the DMT limit because the relationship between σ* and ε* is 
not linear in the JKR and empirical MD models even at small strains.  In applying Pietrement 
and Troyon’s equation to the indentation of poly(vinyl alcohol) gels, we found the samples to be 
close to the DMT limit of the adhesion spectrum, with α = 0 in the majority of cases [4].  Results 
are presented in Table II.  Adhesion was evident only in the retraction strokes, prior to tip-sample 
separation.  The small strain analysis of the AFM data was performed by truncating the datasets 
at about 15% strain and applying either the Hertz equation (extension stroke) or the Pietrement-
Troyon equation (retraction stroke) [4].  The large strain analysis was performed without 
truncation and fitting Equation 5 with Fad = 0 (extension stroke) or with Fad determined from the 
identified contact point (retraction stroke).  The gels were assumed to be incompressible (ν = 
0.5) in all cases.  The generally good agreement between macroscopic compression and AFM 
indentation can be seen from the summary of results found in Table II.   

The Mooney-Rivlin model is derived from a phenomenological treatment of large strain 
elasticity.  Although many refinements to the theory have been formulated [13], the model still 
provides acceptable fits of many sets of experimental data.  We chose it as the basis for modeling 
indentation mechanics because of its relative simplicity.  Figure 1 shows an example of Equation 
5 fit to the extension and retraction portions of a typical dataset from the indentation of the 6% 
gel.  Also shown are the resulting fits when the linear elastic equations are applied to a smaller 
range of indentation strain (~15%).  The errors in the Mooney-Rivlin fits are consistently small 
even to the maximum indentation strain, indicating the rubber elastic nature of the deformation.  
Table II shows that similar values of Young’s modulus were obtained from both methods.  
Although not the case in this experiment, errors associated with the linear models can be 
significantly higher due to greater contribution from noise in the vicinity of the contact point.  It 
is therefore advantageous to apply models that allow inclusion of the full dataset in the analysis. 

 
Table II.  Young’s moduli from compression and AFM nanoindentation (mean ± SD). 

Small Strain, Linear Elastic Large Strain, Mooney-Rivlin % Macro. (kPa) Extend (kPa) Retract (kPa) Extend  (kPa) Retract (kPa) 
6 21.51 ± 0.59 16.55 ± 2.74 19.39 ± 3.26 18.23 ± 2.38 19.51 ± 4.69 

12 115.50 ± 1.86 113.66 ± 6.06 108.98 ± 9.17 115.82 ± 7.21 110.08 ± 13.17 



 
Figure 1.  Fits of a sample dataset from indentation of the 6% gel using both linear elastic 
(Equation 3) and Mooney-Rivlin (Equation 5) contact models.  Every fifth point of the raw data 
is plotted.  Contact points are indicated by solid dots, with coordinates (w0, d0).  For display 
purposes, the curves are shifted apart.  For the small strain analysis, fits are extended beyond the 
imposed strain limit for comparison with the Mooney-Rivlin fits.  The tip extension curve has no 
apparent adhesive interactions while the first release point is taken to be the contact point in the 
retraction curve.  The equation used for each particular fit is indicated along with the strain 
cutoff and the extracted Young’s modulus.  Right inset shows point-by-point plot of errors 
(difference between predicted d and actual d) for each fit.  Left inset shows extension and 
retraction curves plotted on the same scale for comparison. 

 
 

The existence of tip-sample adhesion is demonstrated by the conspicuous valley in the d-w 
retraction curve in Figure 1.  It is clear that the adhesive force can be determined independently 
of the contact model applied.  The neutrality of the poly(vinyl alcohol) gels in our experiments 
prevented divergent adhesive behavior from point to point.  In samples with highly 
inhomogeneous surface energy profiles, AFM probing can in principle, be employed to map 
changes in the interfacial energy. 

The assumption of a Hertzian contact radius over the range of indentation depths is 
significant to the derivation of the force-indentation relationship represented by Equation 5.  
Numerical analysis of the errors associated with this assumption has yet to be performed.  
However, studies on the indentation of plastic materials may provide some insight into the 
validity of the assumption.  It has been shown that the contact radius of materials undergoing 
plastic deformation differs from the Hertzian form by a constant factor [14] and the Hertzian 
contact radius was found to extend beyond the yield point of the material [15].  Based on these 
numerical studies of plastic indentation and the good agreement between the AFM and 



macroscopic compression data, we believe that the assumption for rubber elastic materials is a 
valid first approximation. 

 

CONCLUSIONS 
The prevalence of nanoindentation in measuring the local elastic properties of a wide range 

of materials necessitates the development of contact models that accurately represent various 
material behaviors.  Simple force-indentation relationships are especially desirable for automated 
and high-throughput applications.  The approximate Mooney-Rivlin equation introduced here 
satisfies this requirement and appears capable of modeling the indentation of rubber-like 
materials, both with and without the influence of adhesive interactions.  The approach used to 
derive the equation can also be applied to other hyperelastic models (e.g., neo-Hookean and 
polynomial forms). 
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